Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

نویسندگان

  • Eric Ting
  • Nhan Nguyen
  • Khanh Trinh
چکیده

This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASAGeneric TransportModel (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline “stiff” values representative of current generation transport aircraft.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Aeroelastic Vortex Lattice Modeling of Flexible Aircraft

This paper presents a recently developed computational tool for aeroelastic analysis of aircraft performance. The computational tool couples a vortex-lattice code, Vorview, with an aeroelastic model that computes wing structural deflections under a combined coupled bending-torsion motion. The aeroelastic model of the wing structure is based on a one-dimensional structural dynamic theory using s...

متن کامل

Static and Dynamic Aeroelastic Analysis of a High Aspect Ratio Wing through CFD-CSD Coupled Method

The Solar powered unmanned aircraft have a high-aspect-ratio wings because SPUAV must satisfy the requirement of long endurance and high lift-drag ratio. Therefore, the structure of SPUAV‘s wings are structurally very flexible. The very high flexible wing might have large deformation and many aeroelastic problems. In this paper have a static/dynamic aeroelastic analysis through CFD-CSD coupled ...

متن کامل

Evaluation of 2-D Aeroelastic Models Based on Indicial Aerodynamic Theory and Vortex Lattice Method in Flutter and Gust Response Determination

Two 2-D aeroelastic models are presented here to determine instability boundary (flutter speed) and gust response of a typical section airfoil with degrees of freedom in pitch and plunge directions. To build these 2-D aeroelastic models, two different aerodynamic theories including Indicial Aerodynamic Theory and Vortex Lattice Method (VLM) have been employed. Also, a 3-D aeroelastic framework ...

متن کامل

Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft

This paper presents a study on the coupled aeroelastic/flight dynamic stability and gust response of a blendedwing-body aircraft that derives from the U.S. Air Force’s High Lift-Over-Drag Active (HiLDA) wing experimental model. An effective method is used to model very flexible blended-wing-body vehicles based on a low-order aeroelastic formulation that is capable of capturing the important str...

متن کامل

Loading Estimation of Flapping Wings under Aeroelastic Effect Using Finite Element Method

The aim of this paper is to provide an aeroelastic computational tool which determines the induced wing loads during flapping flight. For this purpose, a Finite Element (FE) code based on a four-node plate bending element formulation is developed to simulate the aeroelastic behavior of flapping wings in low incompressible flow. A quasi-steady aerodynamic model is incorporated into the aeroelast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014